Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Free Radic Biol Med ; 209(Pt 1): 135-150, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37805047

RESUMO

The complex progression of type-2 diabetes (T2DM) may result in increased susceptibility to myocardial ischemia-reperfusion (IR) injury. IR injuries in multiple organs involves ferroptosis. Recently, the clock gene Rev-erbα has aroused considerable interest as a novel therapeutic target for metabolic and ischemic heart diseases. Herein, we investigated the roles of Rev-erbα and ferroptosis in myocardial IR injury during T2DM and its potential mechanisms. A T2DM model, myocardial IR and a tissue-specific Rev-erbα-/- mouse in vivo were established, and a high-fat high glucose environment with hypoxia-reoxygenation (HFHG/HR) in H9c2 were also performed. After myocardial IR, glycolipid profiles, creatine kinase-MB, AI, and the expression of Rev-erbα and ferroptosis-related proteins were increased in diabetic rats with impaired cardiac function compared to non-diabetic rats, regardless of the time at which IR was induced. The ferroptosis inhibitor ferrostatin-1 decreased AI in diabetic rats given IR and LPO levels in cells treated with HFHG/HR, as well as the expression of Rev-erbα and ACSL4. The ferroptosis inducer erastin increased AI and LPO levels and ACSL4 expression. Treatment with the circadian regulator nobiletin and genetically targeting Rev-erbα via siRNA or CRISPR/Cas9 technology both protected against severe myocardial injury and decreased Rev-erbα and ACSL4 expression, compared to the respective controls. Taken together, these data suggest that ferroptosis is involved in the susceptibility to myocardial IR injury during T2DM, and that targeting Rev-erbα could alleviate myocardial IR injury by inhibiting ferroptosis.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Ferroptose , Traumatismo por Reperfusão Miocárdica , Ratos , Camundongos , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Ferroptose/genética , Diabetes Mellitus Experimental/genética , Proteínas
2.
Curr Med Sci ; 43(5): 979-987, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37606736

RESUMO

OBJECTIVE: This study aimed to investigate the effects of the peroxisome proliferator-activated receptor δ (PPARδ) agonist GW501516 on the proliferation of pulmonary artery smooth muscle cells (PASMCs) induced by hypoxia, in order to search for new drugs for the treatment and prevention of pulmonary vascular remodeling. METHODS: PASMCs were incubated with different concentrations of GW501516 (10, 30, 100 nmol/L) under the hypoxic condition. The proliferation was determined by a CCK-8 assay. The cell cycle progression was analyzed by flow cytometry. The expression of PPARδ, S phase kinase-associated protein 2 (Skp2), and cell cycle-dependent kinase inhibitor p27 was detected by Western blotting. Then PASMCs were treated with 100 nmol/ L GW501516, 100 nmol/L mammalian target of rapamycin (mTOR) inhibitor rapamycin and/or 2 µmol/L mTOR activator MHY1485 to explore the molecular mechanisms by which GW501516 reduces the proliferation of PASMCs. RESULTS: The presented data demonstrated that hypoxia reduced the expression of PPARδ in an oxygen concentration- and time-dependent manner, and GW501516 decreased the proliferation of PASMCs induced by hypoxia by blocking the progression through the G0/G1 to S phase of the cell cycle. In accordance with these findings, GW501516 downregulated Skp2 and upregulated p27 in hypoxia-exposed PASMCs. Further experiments showed that rapamycin had similar effects as GW501516 in inhibiting cell proliferation, arresting the cell cycle, regulating the expression of Skp2 and p27, and inactivating mTOR in hypoxia-exposed PASMCs. Moreover, MHY1485 reversed all the beneficial effects of GW501516 on hypoxia-stimulated PASMCs. CONCLUSION: GW501516 inhibited the proliferation of PASMCs induced by hypoxia through blocking the mTOR/Skp2/p27 signaling pathway.

3.
Biomed Pharmacother ; 163: 114795, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37146415

RESUMO

Susceptibility to myocardial ischemia-reperfusion (IR) injury in type-2 diabetes (T2DM) remains disputed, although studies have reported that ferroptosis is associated with myocardial IR injury. Nobiletin, a flavonoid isolated from citrus peels, is an antioxidant that possesses anti-inflammatory and anti-diabetic activities. However, it remains unknown whether nobiletin has any protective effects on susceptibility to myocardial IR injury during T2DM in rats via ferroptosis. To investigate the effects and underlying mechanisms of nobiletin on myocardial IR injury during T2DM, we induced myocardial IR model in rats at T2DM onset vs mature disease. We also established a high-fat high-glucose (HFHG) and hypoxia-reoxygenation (H/R) model in H9c2 cells to imitate abnormal glycolipid metabolism during T2DM. Myocardial injury, oxidative stress and ferroptosis towards myocardial IR in rats with mature T2DM but not at T2DM onset were increased. These changes were restored under treatment with ferrostain-1 or nobiletin. Both ferrostain-1 and nobiletin decreased the expression of ferroptosis-related proteins including Acyl-CoA synthetase long chain family member 4 (ACSL4) and nuclear receptor coactivator 4 (NCOA4) but not glutathione peroxidase 4 (GPX4) in rats with mature T2DM and cells with HFHG and H/R injury. Nobiletin strengthened the effect of si-ACSL4 on inhibiting ACSL4 expression, and also inhibited the effect of Erastin or oe-ACSL4 on increasing ACSL4 expression. Taken together, our data indicates that ferroptosis involves in susceptibility to myocardial IR injury in rats during T2DM. Nobiletin has therapeutic potential for alleviating myocardial IR injury associated with ACSL4- and NCOA4-related ferroptosis.


Assuntos
Diabetes Mellitus Tipo 2 , Ferroptose , Flavonas , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Traumatismo por Reperfusão , Ratos , Animais , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Flavonas/farmacologia , Flavonas/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
4.
Zhongguo Ying Yong Sheng Li Xue Za Zhi ; 38(2): 119-125, 2022 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-36031568

RESUMO

Objective: To investigate the effects of the peroxisome proliferator-activated receptor δ (PPARδ) agonist GW501516 on the proliferation of primary rat proliferation of pulmonary artery smooth muscle cells ( PASMCs ) induced by hypoxia, in order to discover new drugs for the treatment and prevention of pulmonary vascular remodeling. Methods: The PASMCs in the control group were cultured with 21% oxygen, while the PASMCs in the hypoxia group were cultured with 3% oxygen to induce cell proliferation. PASMCs were incubated with GW501516 at the concentrations of 10, 30 and 100 nmol/L under hypoxic conditions for different time points (12, 24, and 48 h) to find out the appropriate concentrations of GW501516 for inhibition the proliferation. PASMCs were incubated with 100 nmol/L GW501516 and ( or ) protein kinase B (AKT) agonist SC79 for 24 h to explore related mechanisms of GW501516 in regulating the proliferation. The proliferation and DNA synthesis were determined by CCK-8 and BrdU kit. The cell cycle progression was analyzed by flow cytometry. The mRNA expressions of Cyclin D1 and the cyclin kinase inhibitor p27(p27) were measured by quantitative real-time PCR (RT-PCR). The expressions of PPARδ, total and phosphorylated forms AKT and glycogen synthase kinase 3ß (GSK3ß) were detected by Western blot. Results: Compared with the hypoxia group, PASMCs incubated with different concentrations of GW501516 (10, 30, 100 nmol/L) for 12, 24, 48 h under hypoxic conditions could inhibit the proliferation and DNA synthesis, and the greatest level of suppression of proliferation was induced by GW501516 at the concentration of 100 nmol/L(P<0.05 or P<0.01). Compared with the control group, the expression of PPARδ was upregulated markedly in PASMCs incubated with 100 nmol/L GW501516 for 24 h,while hypoxia could downregulate the expression of PPARδ significantly(P<0.01). Compared with the hypoxia group, 100 nmol/L GW501516 blocked the proliferation and DNA synthesis of PASMCs significantly(P<0.01), increased the proportion of PASMCs in G0 /G1 phase while decreased the proportion of PASMCs in S phase and G2 /M phase(P<0.05 or P<0.01), markedly downregulated the mRNA expression of cyclin D1 and upregulated the mRNA expression of p27(P<0.01), significantly inhibited the protein expressions of phosphorylated AKT and GSK3ß(P<0.01). Compared with the 100 nmol/L GW501516 hypoxia group, AKT agonist SC79 reversed all the above effects of 100 nmol/L GW501516 on hypoxia stimulated PASMCs(P<0.05 or P<0.01). Conclusion: GW501516 inhibits hypoxia induced proliferation in PASMCs via inactivating AKT/GSK3ß signaling pathway.


Assuntos
PPAR delta , Artéria Pulmonar , Animais , Hipóxia Celular , Proliferação de Células , Células Cultivadas , Ciclina D1 , DNA , Glicogênio Sintase Quinase 3 beta , Hipóxia , Miócitos de Músculo Liso , Oxigênio , Proteínas Proto-Oncogênicas c-akt , RNA Mensageiro , Ratos , Tiazóis
5.
Biomed Pharmacother ; 154: 113595, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36029539

RESUMO

The complex progression of type-2 diabetes (T2DM) results in inconsistent findings on myocardial susceptibility to ischemia-reperfusion (IR). IR injuries in multiple organs interconnect with ferroptosis. Targeting Rev-erbs might limit ferroptosis, with increasing attention turning to the application of circadian medicine against IR injuries. However, whether the Rev-erbs agonist SR9009 could mitigate diabetic IR injury remains unknown. Here, we investigated the susceptibility to IR at onset of T2DM in rats and its potential association between SR9009 and ferritinophagy/ferroptosis signaling. Onset of T2DM model was induced with a high-fat diet and the intraperitoneal injection of a low dose of streptozotocin. Myocardial IR model was established as well. Rats' general characteristics, cardiac function, glycolipid profiles, serum biochemistry, apoptosis index (AI) and morphological histology were observed and analyzed. Western blot and immunofluorescence (IF) were employed to evaluate the expression of ferritinophagy/ferroptosis signaling and its co-localization. Glycolipid profiles and cardiac diastolic function were significantly impaired in diabetic rats. CK-MB, AI levels and ferritinophagy/ferroptosis-related proteins expression decreased towards myocardial IR in diabetic rats compared to non-diabetic rats'. The ferroptosis inducer Erastin up-regulated SOD, MDA, and AI levels, as well as the expression of ferritinophagy/ferroptosis-related proteins in diabetic rats towards IR. Treatment with SR9009 down-regulated the degree of myocardial injury and ferritinophagy/ferroptosis-related proteins expression compared to diabetic rats treated with or without Erastin. Onset of T2DM activated endogenous cardioprotection against the susceptibility to myocardial IR injury, and SR9009 exogenously enhanced this endogenous mechanism and alleviated myocardial IR injury at onset of T2DM by down-regulating ferritinophagy/ferroptosis signaling.


Assuntos
Diabetes Mellitus Tipo 2 , Ferroptose , Isquemia Miocárdica , Traumatismo por Reperfusão Miocárdica , Animais , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Glicolipídeos , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Pirrolidinas , Ratos , Tiofenos
6.
J Cardiothorac Surg ; 17(1): 94, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505380

RESUMO

BACKGROUND: Diabetes and impaired glucose regulation are very common in patients with coronary artery disease (CAD). In this study, we aim to investigate the prevalence of abnormal glucose regulation in men and women in Chinese CAD patients. METHODS: In this retrospective study, 4100 patients (male, n = 2873; female, n = 1227)with CAD were enrolled. The mean age of these patients was 63 years. The demographic data, medical history, echocardiography findings and blood investigations were collected and analyzed. RESULTS: In this population, 953 (24%) patients had definite diagnosis of type 2 diabetes mellitus, including 636 males (23%) and 317 females (27%). There was a higher prevalence of diabetes in females than men (p < 0.05). For the remaining patients, 48% (n = 959) undergone an oral glucose tolerance test (OGTT), which revealed that 83 male patients (12%) and 41 female patients (16%) suffered from the type 2 diabetes (p > 0.05). 283 men (40%) and 105 women (41%) had impaired glucose regulation (IGR) (p > 0.05). Only 338 men (25%) and 109 women (19%) showed the normal glucose regulation, implying a higher prevalence of abnormal glucose regulation in females (p < 0.01). The odd ratio (OR) showed that women were more prone to have diabetes mellitus or IGT than men and the OR was 1.44 and 1.43 respectively. CONCLUSION: Abnormal glucose regulation is highly prevalent in CAD patients. The women are more prone to have diabetes mellitus or IGT than men.


Assuntos
Glicemia/metabolismo , Doença da Artéria Coronariana , Diabetes Mellitus Tipo 2 , Glicemia/química , China/epidemiologia , Doença da Artéria Coronariana/epidemiologia , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/epidemiologia , Feminino , Glucose , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos
7.
Braz. J. Pharm. Sci. (Online) ; 58: e20218, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1403693

RESUMO

Abstract Salidroside (SAL) has been confirmed to have some protective effects against inflammatory injury. However, little information was established as to the mechanism of these protective effects. To this effect, we designed this study to explore the protective effects and mechanisms of SAL against myocardial infarction (MI). A rat MI model was established and divided into five groups (n = 6): sham, MI, MI+SAL, MI+ LY294002 (PI3K inhibitor), and MI+SAL+ LY294002. The cardiac function and histological pathology were analyzed with a color Doppler ultrasonic diagnostic instrument. Anti-oxidative enzyme activities and the production of inflammatory media were assayed by biochemical kits and ELISA. MI size and fibrosis were assayed by Masson's trichrome staining while Bax/Bcl-2 and PI3K/Akt/Nrf2/HO-1 were assayed by Western blotting and immunofluorescence. The results showed that SAL significantly improved the left ventricle ejection fraction and fractional shortening, decreased the MI size and fibrosis, inhibited apoptosis and promoted blood vessel formation. SAL promoted anti-oxidative and anti-inflammatory abilities. Moreover, SAL enhanced PI3K/ Akt/Nrf2/HO-1 expression. To this effect, we designed this study suggested that SAL induced repair of MI via PI3K/A kt/ Nrf2/HO-1.


Assuntos
Animais , Masculino , Ratos , Ventrículos do Coração/anormalidades , Infarto do Miocárdio/tratamento farmacológico , Fibrose/classificação , Ensaio de Imunoadsorção Enzimática/métodos , Apoptose
8.
Cytogenet Genome Res ; 161(3-4): 132-142, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33882492

RESUMO

Coronary heart disease (CHD) is a serious condition comprising atherosclerosis-mediated ischaemic and hypoxic myocardial injury. This study aimed to investigate the mechanism of the miR-210/Casp8ap2 signalling pathway in hypoxic myocardial cells. mRNA and protein expression levels were determined by quantitative real-time PCR and western blotting, respectively. MTT was used to evaluate cell survival, and flow cytometry was used to assess apoptosis and the cell cycle distribution. The interaction between miR-210 and -Casp8ap2 was detected by dual-luciferase reporter assay. As a result, overexpression of miR-210 significantly inhibited apoptosis and reduced the proportion of cells in G1 phase. Moreover, miR-210 suppressed autophagy by upregulating p62 levels and reducing the LC3-II/I ratio in hypoxic cardiomyocytes. miR-210 regulated apoptosis and autophagy by directly targeting Casp8ap2. Furthermore, the expression levels of Casp8ap2, Cleaved caspase 8, Cleaved caspase 3and Beclin-1 were all decreased in response to miR-210. In short, our results suggest that miR-210 exerts anti-apoptotic and anti-autophagic effects in hypoxic cardiomyocytes, which alleviates myocardial injury in response to hypoxia.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Apoptose/genética , Autofagia/genética , MicroRNAs/genética , Miócitos Cardíacos/metabolismo , Transdução de Sinais/genética , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Sequência de Bases , Western Blotting , Hipóxia Celular , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Miócitos Cardíacos/citologia , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência do Ácido Nucleico
9.
Acta Biomater ; 41: 224-34, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27286678

RESUMO

UNLABELLED: For three-dimensional tissue engineering scaffolds, the major challenges of hydrogels are poor mechanical integrity and difficulty in handling during implantation. In contrast, electrospun scaffolds provide tunable mechanical properties and high porosity; but, are limited in cell encapsulation. To overcome these limitations, we developed a "hybrid nanosack" by combination of a peptide amphiphile (PA) nanomatrix gel and an electrospun poly (ε-caprolactone) (ePCL) nanofiber sheet with porous crater-like structures. This hybrid nanosack design synergistically possessed the characteristics of both approaches. In this study, the hybrid nanosack was applied to enhance local angiogenesis in the omentum, which is required of tissue engineering scaffolds for graft survival. The ePCL sheet with porous crater-like structures improved cell and blood vessel penetration through the hybrid nanosack. The hybrid nanosack also provided multi-stage fibroblast growth factor-2 (FGF-2) release kinetics for stimulating local angiogenesis. The hybrid nanosack was implanted into rat omentum for 14days and vascularization was analyzed by micro-CT and immunohistochemistry; the data clearly demonstrated that both FGF-2 delivery and porous crater-like structures work synergistically to enhance blood vessel formation within the hybrid nanosack. Therefore, the hybrid nanosack will provide a new strategy for engineering scaffolds to achieve graft survival in the omentum by stimulating local vascularization, thus overcoming the limitations of current strategies. STATEMENT OF SIGNIFICANCE: For three-dimensional tissue engineering scaffolds, the major challenges of hydrogels are poor mechanical integrity and difficulty in handling during implantation. In contrast, electrospun scaffolds provide tunable mechanical properties and high porosity; but, are limited in cell encapsulation. To overcome these limitations, we developed a "hybrid nanosack" by combination of a peptide amphiphile (PA) nanomatrix gel and an electrospun poly (ε-caprolactone) (ePCL) nanofiber sheet with porous crater-like structures. This design synergistically possessed the characteristics of both approaches. In this study, the hybrid nanosack was applied to enhance local angiogenesis in the omentum, which is required of tissue engineering scaffolds for graft survival. The hybrid nanosack was implanted into rat omentum for 14days and vascularization was analyzed by micro-CT and immunohistochemistry. We demonstrate that both FGF-2 delivery and porous crater-like structures work synergistically to enhance blood vessel formation within the hybrid nanosack. Therefore, the hybrid nanosack will provide a new strategy for engineering scaffolds to achieve graft survival in the omentum by stimulating local vascularization, thus overcoming the limitations of current strategies.


Assuntos
Materiais Biocompatíveis/farmacologia , Nanofibras/química , Neovascularização Fisiológica/efeitos dos fármacos , Omento/irrigação sanguínea , Tecidos Suporte/química , Animais , Ensaio de Imunoadsorção Enzimática , Fator 2 de Crescimento de Fibroblastos/farmacologia , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Imuno-Histoquímica , Cinética , Omento/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Poliésteres/farmacologia , Porosidade , Ratos , Microtomografia por Raio-X
10.
Nutr Diabetes ; 1: e14, 2011 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-22229081

RESUMO

BACKGROUND: Abnormal fatty acid metabolism is an important feature in the mechanisms of insulin resistance and beta-cell dysfunction. Carnitine palmitoyltransferase-1a (CPT-1a, liver isoform) plays a pivotal role in the regulation of mitochondrial fatty acid oxidation. We investigated the role of CPT-1a in the development of impaired glucose tolerance using a mouse model for CPT-1a deficiency when challenged by either a high-carbohydrate (HCD) or a high-fat diet (HFD) for a total duration of up to 46 weeks. METHODS: Insulin sensitivity and glucose tolerance were assessed in heterozygous CPT-1a deficient (CPT-1a+/-) male mice after being fed either a HCD or a HFD for durations of 28 weeks and 46 weeks. Both glucose and insulin tolerance tests were used to investigate beta-cell function and insulin sensitivity. Differences in islet insulin content and hepatic steatosis were evaluated by morphological analysis. RESULTS: CPT-1a+/- mice were more insulin sensitive than CPT-1a+/+ mice when fed either HCD or HFD. The increased insulin sensitivity was associated with an increased expression of Cpt-1b (muscle isoform) in liver, as well as increased microvesicular hepatic steatosis compared to CPT-1a+/+ mice. CPT-1a+/- mice were more glucose tolerant than CPT-1a+/+ mice when fed the HCD, but there was no significant difference when fed HFD. Moreover, CPT-1a+/- mice fed HFD or HCD had fewer and smaller pancreatic islets than CPT-1a+/+ mice. CONCLUSIONS: CPT-1a deficiency preserved insulin sensitivity when challenged by long term feeding of either diet. Furthermore, CPT-1a deficient mice had distinct phenotypes dependent on the diet fed demonstrating that both diet and genetics collectively play a role in the development of impaired glucose tolerance.

11.
Cell Metab ; 11(5): 402-11, 2010 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-20444420

RESUMO

Mitochondrial fatty acid oxidation provides an important energy source for cellular metabolism, and decreased mitochondrial fatty acid oxidation has been implicated in the pathogenesis of type 2 diabetes. Paradoxically, mice with an inherited deficiency of the mitochondrial fatty acid oxidation enzyme, very long-chain acyl-CoA dehydrogenase (VLCAD), were protected from high-fat diet-induced obesity and liver and muscle insulin resistance. This was associated with reduced intracellular diacylglycerol content and decreased activity of liver protein kinase Cvarepsilon and muscle protein kinase Ctheta. The increased insulin sensitivity in the VLCAD(-/-) mice were protected from diet-induced obesity and insulin resistance due to chronic activation of AMPK and PPARalpha, resulting in increased fatty acid oxidation and decreased intramyocellular and hepatocellular diacylglycerol content.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/metabolismo , Resistência à Insulina , Obesidade/etiologia , Quinases Proteína-Quinases Ativadas por AMP , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Acil-CoA Desidrogenase de Cadeia Longa/genética , Animais , Gorduras na Dieta/farmacologia , Diglicerídeos/metabolismo , Humanos , Insulina/metabolismo , Isoenzimas/metabolismo , Fígado/enzimologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Mitocôndrias/enzimologia , PPAR alfa/metabolismo , Proteína Quinase C/metabolismo , Proteína Quinase C-épsilon/metabolismo , Proteína Quinase C-theta , Proteínas Quinases/metabolismo
12.
Lab Invest ; 89(12): 1348-54, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19736549

RESUMO

Cardiac hypertrophy is a common finding in human patients with inborn errors of long-chain fatty acid oxidation. Mice with either very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD-/-) or long-chain acyl-coenzyme A dehydrogenase deficiency (LCAD-/-) develop cardiac hypertrophy. Cardiac hypertrophy, initially measured using heart/body weight ratios, was manifested most severely in LCAD-/- male mice. VLCAD-/- mice, as a group, showed a mild increase in normalized cardiac mass (8.8% hypertrophy compared with all wild-type (WT) mice). In contrast, LCAD-/- mice as a group showed more severe cardiac hypertrophy (32.2% increase compared with all WT mice). On the basis of a clear male predilection, we analyzed the role of dietary plant estrogenic compounds commonly found in mouse diets because of soy or alfalfa components providing natural phytoestrogens or isoflavones in cardioprotection of LCAD-/- mice. Male LCAD-/- mice fed an isoflavone-free test diet had more severe cardiac hypertrophy (58.1% hypertrophy compared with WT mice fed the same diet). There were no significant differences in the female groups fed any of the diets. Echocardiography measurement performed on male LCAD-deficient mice fed a standard diet at the age of approximately 3 months confirmed the substantial cardiac hypertrophy in these mice compared with WT controls. Left ventricular (LV) wall thickness of the interventricular septum and posterior wall was remarkably increased in LCAD-/- mice compared with that of WT controls. Accordingly, the calculated LV mass after normalization to body weight was increased by about 40% in the LCAD-/- mice compared with WT mice. In summary, we found that metabolic cardiomyopathy, expressed as hypertrophy, developed in mice because of either VLCAD deficiency or LCAD deficiency; however, LCAD deficiency was the most profound and seemed to be attenuated either by endogenous estrogen (in females) or by phytoestrogens present in the diet as isoflavones (in males).


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Cardiomegalia/enzimologia , Animais , Peso Corporal , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Dieta , Modelos Animais de Doenças , Ecocardiografia , Feminino , Isoflavonas/uso terapêutico , Masculino , Camundongos , Camundongos Knockout , Miocárdio/patologia , Tamanho do Órgão , Fitoestrógenos/uso terapêutico
13.
Proc Natl Acad Sci U S A ; 104(43): 17075-80, 2007 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-17940018

RESUMO

Alterations in mitochondrial function have been implicated in the pathogenesis of insulin resistance and type 2 diabetes. However, it is unclear whether the reduced mitochondrial function is a primary or acquired defect in this process. To determine whether primary defects in mitochondrial beta-oxidation can cause insulin resistance, we studied mice with a deficiency of long-chain acyl-CoA dehydrogenase (LCAD), a key enzyme in mitochondrial fatty acid oxidation. Here, we show that LCAD knockout mice develop hepatic steatosis, which is associated with hepatic insulin resistance, as reflected by reduced insulin suppression of hepatic glucose production during a hyperinsulinemic-euglycemic clamp. The defects in insulin action were associated with an approximately 40% reduction in insulin-stimulated insulin receptor substrate-2-associated phosphatidylinositol 3-kinase activity and an approximately 50% decrease in Akt2 activation. These changes were associated with increased PKCepsilon activity and an aberrant 4-fold increase in diacylglycerol content after insulin stimulation. The increase in diacylglycerol concentration was found to be caused by de novo synthesis of diacylglycerol from medium-chain acyl-CoA after insulin stimulation. These data demonstrate that primary defects in mitochondrial fatty acid oxidation capacity can lead to diacylglycerol accumulation, PKCepsilon activation, and hepatic insulin resistance.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Fígado Gorduroso/enzimologia , Resistência à Insulina/fisiologia , Fígado/enzimologia , Fígado/patologia , Mitocôndrias/enzimologia , Mitocôndrias/patologia , Acil Coenzima A/metabolismo , Animais , Calorimetria , Isótopos de Carbono , Diglicerídeos/biossíntese , Metabolismo Energético/efeitos dos fármacos , Fígado Gorduroso/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Homeostase/efeitos dos fármacos , Insulina/farmacologia , Fígado/metabolismo , Camundongos , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Oxirredução/efeitos dos fármacos , Proteína Quinase C-épsilon/metabolismo , Transdução de Sinais/efeitos dos fármacos , Triglicerídeos/biossíntese
14.
Mol Genet Metab ; 86(1-2): 179-87, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16169268

RESUMO

To better understand carnitine palmitoyltransferase 1a (liver isoform, gene=Cpt-1a, protein=CPT-1a) deficiency in human disease, we developed a gene knockout mouse model. We used a replacement gene targeting strategy in ES cells that resulted in the deletion of exons 11-18, thus producing a null allele. Homozygous deficient mice (CPT-1a -/-) were not viable. There were no CPT-1a -/- pups, embryos or fetuses detected from day 10 of gestation to term. FISH analysis demonstrated targeting vector recombination at the expected single locus on chromosome 19. The inheritance pattern from heterozygous matings was skewed in both C57BL/6NTac, 129S6/SvEvTac (B6;129 mixed) and 129S6/SvEvTac (129 coisogenic) genetic backgrounds biased toward CPT-1a +/- mice (>80%). There was no sex preference with regard to germ-line transmission of the mutant allele. CPT-1a +/- mice had decreased Cpt-1a mRNA expression in liver, heart, brain, testis, kidney, and white fat. This resulted in 54.7% CPT-1 activity in liver from CPT-1a +/- males but no significant difference in females as compared to CPT-1a +/+ controls. CPT-1a +/- mice showed no fatty change in liver and were cold tolerant. Fasting free fatty acid concentrations were significantly elevated, while blood glucose concentrations were significantly lower in 6-week-old CPT-1a +/- mice compared to controls. Although the homozygous mutants were not viable, we did find some aspects of haploinsufficiency in the CPT-1a +/- mutants, which will make them an important mouse model for studying the role of CPT-1a in human disease.


Assuntos
Carnitina O-Palmitoiltransferase/genética , Genes Letais , Homozigoto , Fígado/enzimologia , Animais , Sequência de Bases , Carnitina O-Palmitoiltransferase/metabolismo , Mapeamento Cromossômico , Primers do DNA , Feminino , Hibridização in Situ Fluorescente , Masculino , Camundongos , RNA Mensageiro/genética
15.
PLoS Genet ; 1(2): e23, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16121256

RESUMO

Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency is the most common inherited disorder of mitochondrial fatty acid beta-oxidation in humans. To better understand the pathogenesis of this disease, we developed a mouse model for MCAD deficiency (MCAD-/-) by gene targeting in embryonic stem (ES) cells. The MCAD-/- mice developed an organic aciduria and fatty liver, and showed profound cold intolerance at 4 degrees C with prior fasting. The sporadic cardiac lesions seen in MCAD-/- mice have not been reported in human MCAD patients. There was significant neonatal mortality of MCAD-/- pups demonstrating similarities to patterns of clinical episodes and mortality in MCAD-deficient patients. The MCAD-deficient mouse reproduced important aspects of human MCAD deficiency and is a valuable model for further analysis of the roles of fatty acid oxidation and pathogenesis of human diseases involving fatty acid oxidation.


Assuntos
Acil-CoA Desidrogenase/deficiência , Erros Inatos do Metabolismo Lipídico/etiologia , Animais , Temperatura Baixa , Modelos Animais de Doenças , Embrião de Mamíferos/citologia , Ácidos Graxos/metabolismo , Fígado Gorduroso , Camundongos , Camundongos Knockout , Oxirredução , Células-Tronco , Taxa de Sobrevida
16.
Mol Genet Metab ; 84(1): 39-47, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15639194

RESUMO

Mice deficient for either long-chain acyl-CoA dehydrogenase (LCAD-/-) or very-long-chain acyl-CoA dehydrogenase (VLCAD-/-) develop hepatic steatosis upon fasting, due to disrupted mitochondrial fatty acid oxidation. Moreover, neither mouse model can maintain core body temperature when exposed to cold. We investigated the effects of fasting and cold exposure on gene expression in these mice. Non-fasted LCAD-/- mice showed gene expression changes indicative of fatty liver, including elevated mRNA levels for peroxisome proliferator-activated receptor-gamma (PPARgamma) and genes involved in lipogenesis. In LCAD-/- and VLCAD-/- mice challenged with fasting and cold exposure, expression of fatty acid oxidation genes was elevated in liver, consistent with increased PPARalpha activity. This effect was not seen in brown adipose tissue, suggesting that expression of these genes may be regulated differently than in liver. The effect of acute cold exposure on expression of fatty acid oxidation genes was measured in peroxisome proliferator-activated receptor (PPAR)-alpha-deficient mice (PPARalpha-/-) and controls. In PPARalpha-/- mice, basal expression of the acyl-CoA dehydrogenases was reduced in liver but was not altered in brown adipose tissue. While cold altered the expression of PPARgamma, sterol-regulatory element binding protein-1 (SREBP-1), ATP citrate lyase, and the uncoupling proteins in brown adipose tissue from both PPARalpha-/- and control mice, fatty acid oxidation genes were unaffected. Thus, while fatty acid oxidation appears critical for non-shivering thermogenesis, expression of the acyl-CoA dehydrogenases is not influenced by cold exposure. Moreover, mitochondrial fatty acid oxidation genes are not regulated by PPARalpha in brown adipose tissue as they are in liver.


Assuntos
Acil-CoA Desidrogenase/deficiência , Tecido Adiposo Marrom/metabolismo , Temperatura Baixa , Jejum/metabolismo , Regulação da Expressão Gênica/genética , Fígado/metabolismo , PPAR alfa/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , ATP Citrato (pro-S)-Liase/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Análise de Variância , Animais , Northern Blotting , Regulação da Temperatura Corporal/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Primers do DNA , Proteínas de Ligação a DNA/metabolismo , Enoil-CoA Hidratase/metabolismo , Fígado Gorduroso/genética , Camundongos , Camundongos Mutantes , Racemases e Epimerases/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Proteína de Ligação a Elemento Regulador de Esterol 1 , Fatores de Transcrição/metabolismo
17.
Biochem J ; 387(Pt 1): 185-93, 2005 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-15535801

RESUMO

In the present paper, we describe a novel method which enables the analysis of tissue acylcarnitines and carnitine biosynthesis intermediates in the same sample. This method was used to investigate the carnitine and fatty acid metabolism in wild-type and LCAD-/- (long-chain acyl-CoA dehydrogenase-deficient) mice. In agreement with previous results in plasma and bile, we found accumulation of the characteristic C14:1-acylcarnitine in all investigated tissues from LCAD-/- mice. Surprisingly, quantitatively relevant levels of 3-hydroxyacylcarnitines were found to be present in heart, muscle and brain in wild-type mice, suggesting that, in these tissues, long-chain 3-hydroxyacyl-CoA dehydrogenase is rate-limiting for mitochondrial beta-oxidation. The 3-hydroxyacylcarnitines were absent in LCAD-/- tissues, indicating that, in this situation, the beta-oxidation flux is limited by the LCAD deficiency. A profound deficiency of acetylcarnitine was observed in LCAD-/- hearts, which most likely corresponds with low cardiac levels of acetyl-CoA. Since there was no carnitine deficiency and only a marginal elevation of potentially cardiotoxic acylcarnitines, we conclude from these data that the cardiomyopathy in the LCAD-/- mouse is caused primarily by a severe energy deficiency in the heart, stressing the important role of LCAD in cardiac fatty acid metabolism in the mouse.


Assuntos
Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Carnitina/metabolismo , Ácidos Graxos/metabolismo , Animais , Química Encefálica , Rim/química , Fígado/química , Masculino , Camundongos , Camundongos Endogâmicos , Músculos/química , Testículo/química
18.
Prostate ; 61(1): 26-34, 2004 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-15287091

RESUMO

BACKGROUND: Apoptosis is disrupted in prostate tumor cells, conferring a survival advantage. p53 is a nuclear protein believed to regulate cancer progression, in part by inducing apoptosis. To test this possibility in future studies, the objective of the present study was to generate a transgenic mouse model expressing mutant p53 in the prostate (PR). METHODS: Transgene incorporation was tested using Southern analysis. Expression of mutant p53 protein was examined using immunofluorescence microscopy. Apoptosis in the PR was evaluated using the Tunnel method. RESULTS: A construct, consisting of the rat probasin promoter and a mutant human p53 fragment, was prepared and used to generate transgenic mice. rPB-mutant p53 transgene incorporation, as well as nuclear accumulation of mutant human p53 protein, was demonstrated. Prostatic intraepithelial neoplasia (PIN) III and IV were found in PR of 52-week old transgenic mice, whereas no pathological changes were found in the other organs examined. PR ability to undergo apoptosis following castration was reduced in rPB-mutant p53 mice as compared to non transgenic littermates. CONCLUSIONS: Transgenic rPB-mutant p53 mice accumulate mutant p53 protein in PR, resulting in neoplastic lesions and reduced apoptotic potential in the PR. Breeding rPB-mutant p53 mice with mice expressing an oncogene in their PR will be useful in examining interactions of multiple genes that result in progression of slow growing prostate tumors expressing oncogenes alone to metastatic cancer.


Assuntos
Apoptose/genética , Transformação Celular Neoplásica/genética , Próstata/fisiologia , Neoplasias da Próstata/genética , Proteína Supressora de Tumor p53/genética , Animais , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Modelos Animais de Doenças , Feminino , Humanos , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Masculino , Camundongos , Camundongos Transgênicos , Microscopia de Fluorescência , Mutação , Orquiectomia , Próstata/citologia , Próstata/metabolismo , Neoplasia Prostática Intraepitelial/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ratos , Proteína Supressora de Tumor p53/biossíntese , Proteína Supressora de Tumor p53/fisiologia
19.
AIDS Res Hum Retroviruses ; 19(12): 1141-50, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14709251

RESUMO

We investigated the effects of the HIV protease inhibitor ritonavir on body composition, serum lipids, and gene expression in C57BL/6 mice. Dual-energy X-ray absorptiometry measurements in ritonavir-treated male mice revealed whole-body lipoatrophy. In female mice fat reduction was restricted to the gonadal depot. A histopathological analysis showed no visible abnormalities in liver or adipose tissue from ritonavir-treated mice, although adipocytes were significantly smaller in diameter. Serum triglyceride levels were increased in ritonavir-treated male mice. Ritonavir was coadministered with the peroxisome proliferator-activated receptor alpha (PPARalpha) agonist gemfibrozil and the PPARgamma agonist rosiglitazone for 8 weeks. Neither drug alleviated the hypertriglyceridemia or lipoatrophy in ritonavir-treated male mice. Rather, gemfibrozil exacerbated the lipoatrophy. Ritonavir reduced basal expression of two PPARalpha target genes in liver, as well as the PPARgamma target gene phosphoenolpyruvate carboxykinase (PEPCK) in adipose tissues. Ritonavir partially inhibited induction of PPAR target genes by gemfibrozil and rosiglitazone. Gemfibrozil induced expression of fatty acid oxidation genes in liver, and this induction was less substantial when ritonavir was coadministered. Similarly, rosiglitazone induced expression of uncoupling protein-1, uncoupling protein-2, and PEPCK in adipose tissues, and this effect was partially inhibited by ritonavir. Thus, the effects of ritonavir on serum triglycerides and body composition may be due, at least in part, to an inhibition of PPAR function.


Assuntos
Ácidos Graxos/biossíntese , Inibidores da Protease de HIV/efeitos adversos , Lipodistrofia/induzido quimicamente , Fígado/efeitos dos fármacos , Ritonavir/efeitos adversos , Animais , Lipodistrofia/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esteróis/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...